Verified Gaming

Joseph R. Kiniry Daniel M. Zimmerman
IT University of Copenhagen Univ. of Washington Tacoma
Copenhagen, Denmark Tacoma, Washington, USA
kiniry@acm.org dmz@acm.org

| st Games and Software Engineering Workshop - 22 May 201 |

mailto:dmz@acm.org
mailto:dmz@acm.org
mailto:kiniry@ucd.ie
mailto:kiniry@ucd.ie

Our Assumptions

% formal methods play a critical role in the
development of reliable software systems

% students in programming courses tend to
run away screaming when confronted
directly with the associated mathematics

% game-related projects are excellent
motivators for students

The Core ldeas

* if students successfully implement a game
using a formal methods-rich process, they
will have fun and also learn to appreciate
formal methods

% since games exhibit complex behavior
relative to implementation size, this is an
excellent way to exercise and improve our
formal development tools and techniques

A Related ldea

* applying lightweight formal methods to
real-world game development can have
substantial benefits, since the cost of failure
on game projects can be quite high

% we are pursuing work along these lines,
but so far we have focused more on the
benefits games can provide for formal
methods development than vice-versa

Achieving Verified
Gaming in Courses

& secret ninja formal methods — a formal
development process that doesn’t frighten
students away

& running systems as specifications — existing
games as the basis for class projects

Secret Ninja
Formal Methods

% we incorporate formal methods into the
development process with minimal new
notation — i.e., stealth mathematics

% our students know English and Java, so we
use them for informal and formal
specifications (all in a formal framework)

% we dlign learning with engineering by
coupling assessment with tool feedback

Secret Ninja Process

s multiple stages, all reversible

% analysis and design in structured English
(informal BON)

% refinement to implementation skeletons
with assertions (JML, looks like Java)

* “filling in the blanks”

% continuous static checking and automated
testing throughout development

Concept Analysis

% agree upon the (domain) concepts
% Weapon, Shuriken, Point, Velocity, Enemy
% define each with a simple English statement

% Shuriken - “a weapon in the form of a
star’”’

* identify all is-a and has-a relations
s Shuriken is-a Weapon

<~ Shuriken has-a Point

Describe Concepts

% identify queries, commands, and constraints
s Shuriken...
% How many points do you have?
% Fly toward that enemy!

% You must have at least three points.

Capture Specs in BON

class_phart SHURIKEN
inherit WEAPON

indexing

author: “Secret Ninjas”
description

“a weapon in the form of a star”
query

“How many points do you have?”
command
“Fly toward that enemy!”
constraint
“You must have at least three points.”
end

Refine Informal BON
into Documented lypes

/**

* A weapon in the form of a star.
*

* @dauthor Secret Ninjas
*/
class Shuriken extends Weapon {
/** How many points do you have? */
/** Fly toward that enemy! */
/** You must have at least three points. */

}

Introduce Signatures

/**

* A weapon in the form of a star.
*

* @dauthor Secret Ninjas
*/
class Shuriken extends Weapon {
/** How many points do you have? */
byte points();

/** Fly toward that enemy! */
void attack (Enemy the enemy) ;

/** You must have at least three points. */

}

Specs

/**

* A weapon in the form of a star.
*

* @dauthor Secret Ninjas
*/
class Shuriken extends Weapon {
/** How many points do you have? */
/*Q@ pure */ byte points();

/** Fly toward that enemy! */
//Q ensures the enemy.slain();

/** You must have at least three points. */
//Q@ invariant 3 <= points();

}

Running Systems as
Specifications

% students pick, or are given, a classic game
to replicate

% they then (exhaustively!) play the original
game in an emulator like MAME or VICE

% the goal: discover how the game works
(rules, constraints, balance, bugs, ...),
generate an O-0 analysis and design, and
implement it in a high-level language

Running Systems as
Specifications

s why have students implement games that
already exist, rather than design their own!

% they can focus on software engineering
concepts rather than on game design

% they can see issues of resource
utilization, performance, etc. first-hand —
classic games are extremely impressive
despite minimal computing resources

Example

% one class project used Thrust,a C=64 game

where the player pilots a ship in a cave to
pick up pods and fly them into space

k FLEL LIVES ——/—————=SC0ORE)
iAo ES a

http://en.wikipedia.org/wiki/Thrust_(video_game)
http://en.wikipedia.org/wiki/Thrust_(video_game)

Example

<% there are a number of different entities in
the game

% the ship is subject to gravity and inertia, so
physics comes into play

- BON charts

http://www.verifiedgaming.org/thrust-bon.html
http://www.verifiedgaming.org/thrust-bon.html

Results

% students are generally excited about the
courses in which we use this technique

% the resulting games are mostly reasonable
reimplementations, though they aren’t
always completely finished within an
academic quarter/semester

% we’ve had some success with validation and
verification of game event loops and
rendering ("*Verified Pong” MSc project)

http://www.verifiedgaming.org/

* links to everything we use (tools,

rechn[g)D AYEY i gato

% more will become available over time,
including student projects — some are
already available from linked course pages

% questions?

http://www.verifiedgaming.org
http://www.verifiedgaming.org

