
Joseph R. Kiniry
IT University of Copenhagen

Copenhagen, Denmark

kiniry@acm.org

Daniel M. Zimmerman
Univ. of Washington Tacoma
Tacoma, Washington, USA

dmz@acm.org

Verified Gaming

1st Games and Software Engineering Workshop - 22 May 2011

mailto:dmz@acm.org
mailto:dmz@acm.org
mailto:kiniry@ucd.ie
mailto:kiniry@ucd.ie

Our Assumptions

formal methods play a critical role in the
development of reliable software systems

students in programming courses tend to
run away screaming when confronted
directly with the associated mathematics

game-related projects are excellent
motivators for students

The Core Ideas

if students successfully implement a game
using a formal methods-rich process, they
will have fun and also learn to appreciate
formal methods

since games exhibit complex behavior
relative to implementation size, this is an
excellent way to exercise and improve our
formal development tools and techniques

A Related Idea

applying lightweight formal methods to
real-world game development can have
substantial benefits, since the cost of failure
on game projects can be quite high

we are pursuing work along these lines,
but so far we have focused more on the
benefits games can provide for formal
methods development than vice-versa

Achieving Verified
Gaming in Courses

secret ninja formal methods – a formal
development process that doesn’t frighten
students away

running systems as specifications – existing
games as the basis for class projects

Secret Ninja
Formal Methods

we incorporate formal methods into the
development process with minimal new
notation – i.e., stealth mathematics

our students know English and Java, so we
use them for informal and formal
specifications (all in a formal framework)

we align learning with engineering by
coupling assessment with tool feedback

Secret Ninja Process
multiple stages, all reversible

analysis and design in structured English
(informal BON)

refinement to implementation skeletons
with assertions (JML, looks like Java)

“filling in the blanks”

continuous static checking and automated
testing throughout development

Concept Analysis
agree upon the (domain) concepts

Weapon, Shuriken, Point, Velocity, Enemy

define each with a simple English statement

Shuriken - “a weapon in the form of a
star”

identify all is-a and has-a relations

Shuriken is-a Weapon

Shuriken has-a Point

Describe Concepts

identify queries, commands, and constraints

Shuriken...

How many points do you have?

Fly toward that enemy!

You must have at least three points.

Capture Specs in BON
class_chart SHURIKEN
 inherit WEAPON
 indexing
 author: “Secret Ninjas”
 description
 “a weapon in the form of a star”
 query
 “How many points do you have?”
 command
 “Fly toward that enemy!”
 constraint
 “You must have at least three points.”
end

Refine Informal BON
into Documented Types

/**
 * A weapon in the form of a star.
 *
 * @author Secret Ninjas
 */
class Shuriken extends Weapon {
 /** How many points do you have? */
 /** Fly toward that enemy! */
 /** You must have at least three points. */
}

Introduce Signatures
/**
 * A weapon in the form of a star.
 *
 * @author Secret Ninjas
 */
class Shuriken extends Weapon {
 /** How many points do you have? */
 byte points();

 /** Fly toward that enemy! */
 void attack(Enemy the_enemy);

 /** You must have at least three points. */
}

Specs
/**
 * A weapon in the form of a star.
 *
 * @author Secret Ninjas
 */
class Shuriken extends Weapon {
 /** How many points do you have? */
 /*@ pure */ byte points();

 /** Fly toward that enemy! */
 //@ ensures the_enemy.slain();
 void attack(/*@ non_null */ Enemy the_enemy);

 /** You must have at least three points. */
 //@ invariant 3 <= points();
}

Running Systems as
Specifications

students pick, or are given, a classic game
to replicate

they then (exhaustively!) play the original
game in an emulator like MAME or VICE

the goal: discover how the game works
(rules, constraints, balance, bugs, ...),
generate an O–O analysis and design, and
implement it in a high-level language

Running Systems as
Specifications

why have students implement games that
already exist, rather than design their own?

they can focus on software engineering
concepts rather than on game design

they can see issues of resource
utilization, performance, etc. first-hand –
classic games are extremely impressive
despite minimal computing resources

Example
one class project used Thrust, a C=64 game
where the player pilots a ship in a cave to
pick up pods and fly them into space

http://en.wikipedia.org/wiki/Thrust_(video_game)
http://en.wikipedia.org/wiki/Thrust_(video_game)

Example

there are a number of different entities in
the game

the ship is subject to gravity and inertia, so
physics comes into play

BON charts

http://www.verifiedgaming.org/thrust-bon.html
http://www.verifiedgaming.org/thrust-bon.html

Results

students are generally excited about the
courses in which we use this technique

the resulting games are mostly reasonable
reimplementations, though they aren’t
always completely finished within an
academic quarter/semester

we’ve had some success with validation and
verification of game event loops and
rendering (“Verified Pong” MSc project)

http://www.verifiedgaming.org/

links to everything we use (tools,
techniques, course pages, etc.)

more will become available over time,
including student projects – some are
already available from linked course pages

questions?

Domo Arigato

http://www.verifiedgaming.org
http://www.verifiedgaming.org

